
Skywalker: Efficient Alias-method-based Graph
Sampling and Random Walk on GPUs

Pengyu Wang∗, Chao Li∗, Jing Wang∗, Taolei Wang∗, Lu Zhang∗, Jingwen Leng∗†, Quan Chen∗, Minyi Guo∗
∗Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

Email: {wpybtw, jing618, sjtuwtl, luzhang}@sjtu.edu.cn, {lichao, leng-jw, chen-quan, guo-my}@cs.sjtu.edu.cn
†Shanghai Qi Zhi Institute, Shanghai, China

Abstract—Graph sampling and random walk operations, cap-
turing the structural properties of graphs, are playing an impor-
tant role today as we cannot directly adopt computing-intensive
algorithms on large-scale graphs. Existing system frameworks
for these tasks are not only spatially and temporally inefficient,
but many also lead to biased results. This paper presents
Skywalker, a high-throughput, quality-preserving random walk
and sampling framework based on GPUs. Skywalker makes three
key contributions: first, it takes the first step to realize efficient
biased sampling with the alias method on a GPU. Second, it
introduces well-crafted load-balancing techniques to effectively
utilize the massive parallelism of GPUs. Third, it accelerates alias
table construction and reduce the GPU memory requirement with
efficient memory management scheme. We show that Skywalker
greatly outperforms the state-of-the-art CPU-based and GPU-
based baselines, in a wide spectrum of workload scenarios.

Index Terms—Graph sampling, random walk, graphics pro-
cessing unit.

I. INTRODUCTION

As a ubiquitous data structure, a graph holds the information

of entities and the relationship between them. Classic graph

processing algorithms can only capture the low-level features,

while traditional machine learning on graphs requires time-

consuming feature engineering. In recent years, graph repre-

sentation learning aims to automatically learn the embedding

that encodes the structure information of the graphs for

the downstream machine learning tasks. It has shown great

promise in recommendation system [1], e-commerce [2], etc.

Graph sampling and random walk algorithms are both

important procedures for exploring graphs. The former mainly

emphasizes on the local structure while the latter intends to

capture more global information. Both types of operations

can significantly reduce the ever-growing size of graph data,

which allows researchers to adopt deeper and more com-

plicated neural networks on large-scale graphs. Algorithms

like node2vec [3], DeepWalk [4] GraphSAGE [5], Para-

GCN [6] and GraphSAINT [7] learn the embedding of nodes

or graphs, showing similar or even better results than directly

learning from the entire graph. As reported in prior work [8],

graph sampling accounts for 31% to 82% of the time for

GraphSAGE training. Therefore, the performance of graph

sampling is critical for the rapid iteration of GNNs.

Sampling and random walks are considered as embarrass-

ingly parallel computing tasks, which exhibit little commu-

nication between walkers or sampling instances. However,

effectively leveraging the parallel processors for them is non-

trivial. There are two types of sampling and random walks:

unbiased (unweighted) and biased (weighted). The former

one selects neighbors uniformly, and it is generally easy to

scale on cores. However, many algorithms use non-uniform

sampling probability to select neighbors, hoping to capture

more information of the graph structure, termed as biased
walk/sampling. In contrast, the biased version computes the

transition probability for neighbors according to edge weights,

showing great irregularity due to the nature of graphs.

Since sampling can be seen as a type of graph algorithm, a

few researchers have reconfigured the existing general graph

processing frameworks to perform sampling and random walk.

For example, DrunkardMob [9] provides out-of-memory ran-

dom walk capability based on GraphChi [10]. Deep Graph

Library (DGL) [11] leverages a minimal Gunrock [12] im-

plementation to perform sampling. In general, these systems

follow the vertex-centric iterative execution model commonly

used in graph computing frameworks [12]–[14]. Nonetheless,

they lack optimizations specifically for graph sampling and

random walks, which exhibit different properties than tradi-

tional graph processing workloads.

Specialized system frameworks have been proposed to ad-

dress the unique characteristics of graph sampling or random

walks. For example, there have been studies with CPU-based

designs. GraphWalker [15] is a system optimized for random

walk on disk-resident graphs, supporting the only unbiased

random walk. KnightKing [16] is a distributed system dedi-

cated to random walk algorithms. It adopts the classic alias
method [17], which is in favor of sampling but requires a pre-

processing procedure (building an alias table for all vertices).

Another important group of works is to take advantage of

the massive parallelism and the high-bandwidth on-board

memory of GPUs. Two representative GPU-based sampling

frameworks are C-SAW [18] and NextDoor [8]. NextDoor

adopts the rejection sampling techniques from KnightKing, but

its number of trials is highly dependent on the distribution of

biases. C-SAW, on the other hand, uses the inverse transform
sampling (ITS) [19] method to select vertices, which is costly

in terms of time complexity. Besides this, C-SAW neglects

high-degree vertices, resulting in biased results.

Based on the above observations, we ask an important

question: can we perform sampling/walking in a spatially
and temporally efficient manner while ensuring exact results?

304

2021 30th International Conference on Parallel Architectures and Compilation Techniques (PACT)

978-1-6654-4278-7/21/$31.00 ©2021 IEEE
DOI 10.1109/PACT52795.2021.00029

20
21

 3
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 P
ar

al
le

l A
rc

hi
te

ct
ur

es
 a

nd
 C

om
pi

la
tio

n
Te

ch
ni

qu
es

 (P
AC

T)
 |

 9
78

-1
-6

65
4-

42
78

-7
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
PA

CT
52

79
5.

20
21

.0
00

29

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 03,2023 at 08:24:48 UTC from IEEE Xplore. Restrictions apply.

To answer this question, we thoroughly investigate exiting

algorithms, systems, as well as hardware platforms. We found

that the alias method has shown great potential. The idea is to

jointly exploit the low-time-complexity sampling with the alias

method and the massive parallelism with GPU acceleration.

Note that the alias method is underestimated and is considered

to be not well-suited for running on GPUs in prior works [18],

[20]. In this paper, we focused our attention on unleashing the

full potential of the alias method on GPUs.

We present Skywalker, an efficient solution for graph sam-

pling and random walks on GPU. We have implemented an

easy-to-use programming interface for a variety of algorithms.

It includes optimization for unbiased or biased, sampling or

random walk algorithms, and real-time or online application

scenarios. Skywalker shows significant speedup over the state-

of-the-art baseline systems. We are ready to release Skywalker

as an open-source project in the near future. To the best of

our knowledge, Skywalker is the first system that addresses

the challenges of efficiently adopting the alias method for

sampling on GPU.

This paper makes the following contributions:

• We introduce a parallel algorithm for alias table con-

struction. To the best of our knowledge, this is the first

implementation of the alias method on GPU.

• We introduce versatile sampler, a novel execution model

for graph sampling and random walk algorithms. It care-

fully handles the irregularity of graphs and it can reduce

the overhead of GPU kernel invoking.

• We introduce efficient buffering techniques using shared

memory to accelerate alias table construction. Along

with the proposed compressed alias table, the memory

requirement of the alias method is greatly reduced.

• We put the above techniques together and present Sky-

walker, an efficient system for graph sampling and ran-

dom walk algorithms on GPU. It is heavily optimized

for the alias method on GPU in execution and memory

efficiency. We show that Skywalker achieves significant

speedup over state-of-the-art baselines.

II. BACKGROUND

A. Graph Sampling and Random Walk

We first introduce the terminology of graph sampling and

random walk algorithms. Graph sampling and random walk

algorithms are to find a subgraph that can be used to estimate

the properties of the original graph.

a) Graph Sampling: Graph sampling algorithms work

as follows: For a given graph, one sampler starts from a

given root vertex, then repeatedly selects several neighbors

of the residing vertex (usually without replacement). Select-

ing uniformly or according to a given transition probabil-
ity distribution results in unbiased or biased sampling. The

probability distribution is often determined by the weight of

edges. Neighbor sampling samples a constant number

of neighbors for each layer. GraphSage [5] is an induc-
tive algorithm to learn the embedding of a graph using

Aggr.

Aggr.

Aggr.

2-hop
1-hop

Root

Fig. 1: Graph neural network using Neighbor Sampling.

Aggregators gather the information of 2-hop neighbors.

0

43

12

Fig. 2: Random walk on a graph. A walk path is in green.

Neighbor sampling. It samples the k-hop neighbors of

the root vertices. Figure 1 shows how these GNN algorithms

work. Snow-ball sampling [21] continually adds newly-

discovered neighbors of vertices in the current vertex set until

a certain depth. Forest-fire sampling [22], [23] is a

probabilistic version of Snow-ball sampling, following

a binomial distribution.

b) Random Walk: The procedure of random walks is

similar to sampling. One walker repeatedly selects one neigh-

bor from the residing vertex, and moves itself to the selected

vertex until its length reaches a given length. Personalized
PageRank (PPR) [24], [25] is a sophisticated version of

PageRank [26]. It is a biased random walk algorithm with a

determination probability for each step. Deepwalk [4] is an

unbiased walk algorithm for graph embedding. Later work [27]

extends Deepwalk to a biased version.

The biases in the aforementioned algorithms are static. On

the other hand, some algorithms leverage dynamic biases using

the runtime information. node2vec [3] introduces the 2nd

order random walk, defining two hyperparameters p and q to

utilize the running states. Specifically, a walker just traveled

edge (t, v) and resides at vertex v. Its transition weight to

vertex v’s neighbor x for the next step is regulated with a

parameter αpq as w′
vx = αpq(t, x)× wvx, where

αpq(t, x) =

⎧⎨
⎩

1
p , if dtx = 0

1, if dtx = 1
1
q , if dtx = 2

p is called as the return parameter, deciding the likelihood of

immediately revisiting a node.

c) Summary: Random walk algorithms can be seen as

special cases of sampling as they both select vertices based on

the connectivity of graphs. We use sampling to refer to both

graph sampling and random walk algorithms unless otherwise

noted. We use transit vertices to term the vertices whose

305

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 03,2023 at 08:24:48 UTC from IEEE Xplore. Restrictions apply.

neighbors are to be selected. We use sample instances to

represent the independent sampling tasks.

B. Key Operations of Sampling

Selecting vertices for unbiased sampling is straightforward

as we can generate random numbers from 1 to the degree of

the current vertex to select the neighbors. To select vertices

for biased sampling, there are several options.

a) Inverse Transform Sampling (ITS): ITS is a common

technique for sampling. It computes the cumulative distribu-

tion function (CDF) of the bias distribution, and then performs

sampling. Suppose a vertex u has neighbors v1, v2, ..., vn. The

bias of edge Euvi
connecting vertex u and vi is buvi

. We can

get the CDF as

C(j) =

∑j
1 buvi∑n
1 buvi

.

Given a random number p between 0 and 1, we can find a

candidate vertex vk satisfying that C(k) ≤ p < C(k + 1).
For example, v1 to v4, the neighbors of v0, have bias 1, 1,

1 and 2, respectively. The CDF is computed as Figure 3(a).

Suppose we generate the random number as 0.8, then v4 is the

sampled vertex. Computing the CDF requires O(n) time and

space while optimized drawing samples once has O(log n)
complexity using binary search.

b) Rejection Sampling: Rejection sampling does not

need to compute the CDF. Instead, it leverages an easy-to-

sample distribution to assist the sampling. Specifically, this

distribution, called envelope distribution, is the upper bound

of the bias distribution. For example, the rectangle covering

from (0,0) to (4,2), representing a uniform distribution, is an

envelope of the bias distribution in Figure 3(b). Then we can

generate two random numbers to simulate throwing a dart

within that envelope. If the height of the sample is lower than

the bias of its position, we accept this sample. If the height of

the sample is higher than the bias of its position, we reject this

sample and repeat this procedure until we find a valid sample.

Finally, the accepted samples follow the bias distribution. For

more details, please refer to the related textbooks [28].

c) Alias Method: This method constructs two tables, a

probability table, and an alias table to draw samples. Specifi-

cally, this algorithm assigns the biases of n neighbor vertices

into n buckets. The vertices which have biases larger than the

average bias distribute their biases to help those vertices with

biases lower than the average bias to fill up their buckets. As

Figure 3(c) shows, v1, v2, v3 all have a normalized bias 0.8.

Thus, v4 contributes its bias to fill up the bucket of v1, v2, v3.

The resulted probability table is {0.8, 0.8, 0.8, 1} and the alias

table is {v4, v4, v4, v4}. To select one sample, we need to

generate two random numbers. The first one determines one

index while the second one determines to choose the vertex

of that index or its alias. Constructing an alias table requires

O(n) time and space while the cost of sampling once is O(1).

C. Limitations of the State-of-the-Art

Exiting frameworks all have their limitations. Taking C-

SAW (the latest work on GPU-based sampling) for example, it

often generates biased results. C-SAW leverages prefix-sum to

compute the Cumulative Transition Probability Space (CTPS),

but it lacks the support for computing the CTPS for extremely

high-degree vertices. Its open-sourced implementation [29]

just skips the vertices with degrees larger than 8000. In

addition, C-SAW uses binary search to draw samples. The

time complexity of selecting samples in this way is too high

compared with the alias method (O(log n) vs. O(1)). It is

costly to draw samples for high-degree vertices. Moreover,

C-SAW’s implementation leverages inflexible data structure

for sampled result and intermediate data which is severely

limited for high-degree vertices and space inefficient in terms

of memory utilization. For example, its in-memory variant can

only issue around 4000 random walk instances for Orkut at a

time on a single tested GPU with 11 GB memory.

Another representative work on GPU-based sampling is

NextDoor [8]. It chooses to leverage rejection sampling similar

to KnightKing [16]. However, the average number of trials of

rejection sampling is highly dependent on the distribution of

biases. For example, Layer Sampling [30] leverages the degree

of vertices as bias. For power-law graphs, the biases also have

a power-law-like distribution which means that the biases of

some vertices are so large that rejection sampling would have

a large average number of trials for every trial.

D. Design Opportunities and Challenges

The alias method is preferable in practice as it allows

drawing samples in constant time. Once the alias table is

constructed, sampling takes constant time as long as the

bias does not change. This is preferable as the alias table

can be reused across epochs and even different downstream

applications. The preprocessing cost can be amortized as the

downstream GNN tasks generally need to run tens or hundreds

of epochs till convergence. Not to mention that AI researchers

often need to run tasks repetitively for network architecture

searching [31] and hyperparameter tuning.

Despite the above benefit, the speed for constructing the

alias table can be a bottleneck, especially for some algorithms

using dynamic biases such as node2vec. A natural way

to speed up alias table construction is leveraging parallel

processing units such as GPGPU. However, constructing an

alias table is considered to be non-trivial or problematic

on GPUs [18], [20]. Wei et al. [20] found that their GPU

implementation for TopPPR [32] is no faster than the multi-

thread CPU version.

Specifically, adopting the alias method on GPU faces three

challenges:

1) It is challenging to parallelize the execution of the alias
method on GPU. Constructing the alias table includes

a large portion of serial operations. It is non-trivial to

map the alias table to GPUs with SIMT execution style.

Naively mapping the serial part of the algorithm to

each GPU thread would incur warp divergence due to

unpredictable logical branch, which would severely limit

execution efficiency.

306

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 03,2023 at 08:24:48 UTC from IEEE Xplore. Restrictions apply.

(a) Inverse transform sampling

0

0.5

1

1.5

2

1 2 3 4

Bi
as

(b) Rejection sampling

0

0.5

1

1 2 3 4

N
or

m
al

iz
ed

 B
ia

s

v1

v4

v4v2 v3

v4v4
…

Alias

…

Prob

.8

.8

.8
1

……

(c) Alias method

Fig. 3: Methods to perform sampling.

Sampling & Random Walk Algorithms

Execution Engine

Compressed
Alias Table

Efficient buffer

Mem. Opt.

Versatile
Sampler

Semi-async.
Execution

Programming Interface

Parallel Alias
Table

Construction Alg.

Speculative
Execution

Fig. 4: Skywalker architecture.

2) It is challenging to balance the parallelism and memory
requirement on GPUs. On one hand, processing many

sampling instances concurrently is the key to utilize

the massive parallelism of GPUs. On the other hand,

constructing an alias table for each vertex requires

memory space to storing the necessary intermediate data,

which is not insignificant (more details are discussed in

§III-C1c). The overall memory requirement of the buffer

is proportional to the number of concurrent sampling

instances. It is difficult to provide high sampling perfor-

mance while squeezing the memory budget.

3) It is challenging to adopt the memory-hungry alias
method on resource-limited GPUs. Besides the memory

consumption for the intermediate data, storing the alias

method itself requires a larger space than the graph

structure data. Thus, the capability of processing large

graphs would be greatly limited without sophisticated

designs for space efficiency.

III. SKYWALKER

In this work, we set an ambitious goal of addressing the

aforementioned challenges, so that we can enjoy the benefits of

the alias method for sampling on GPUs. This section presents

Skywalker, our comprehensive solution for graph sampling and

random walk on the GPU.

A. System Overview

Skywalker is systemically optimized in three aspects: par-

allel algorithm, parallel execution engine, and memory opti-

mizations. 1) The parallel algorithm aims to address the first

challenge, allowing Skywalker to exploit the parallelism inside

each sampling task instance, i.e. intra-instance parallelism.

2) The parallel execution engine leverages a novel execution

model with multi-level parallel for load-balancing and GPU

execution efficiency to fully exploit the parallelism of indepen-

dent sampling instances, i.e. inter-instance parallelism. This

execution model allows one to utilize the massive parallelism

of GPUs while it does not require much space for intermediate

data, addressing the second challenge. 3) Our memory opti-

mizations include the designs to reduce memory requirement

so that Skywalker can better handle large graphs, addressing

the third challenge.

Skywalker targets both unbiased and biased workloads.

Skywalker supports two working modes for biased workloads,

offline or realtime mode. In the offline mode, it constructs the

alias table for all vertices in one graph dataset at once as a

preprocessing procedure. After the preprocessing, Skywalker

performs sampling or random walk directly using the built

alias table. In the realtime mode, the alias table of one vertex is

constructed for those transit vertices on the fly. Skywalker can

cache the constructed alias table for future reuse. For sampling

and random walk algorithms using dynamic bias, Skywalker

works in the realtime mode. For algorithms using static bias,

Skywalker can work in either realtime or offline mode.

B. Exploiting Intra-instance Parallelism

To allow the alias method to effectively run on GPUs, we

first parallelize the algorithm to construct the alias table.

a) Parallel Alias Table Construction: We first present a

classic serial algorithm, known as Vose’s Alias Method [33]

in Algorithm 1. Without loss of generality, we first normalize

the bias so that the average bias equals to 1. Then, the

vertices with biases larger than 1 are inserted into a set

Large. Correspondingly, the vertices with biases less than 1

are inserted into a set Small. Then, vs and vl are popped from

Small and Large. Their biases are used to fill up a bucket

of size one. A portion of bias of vl can help vs to fill up the

bucket of vs. As the original bias of vl is larger than 1, its

currently remaining bias is larger than 0. If the remaining bias

of vl is larger than 1, vl is inserted back to Large, or Small
if the remaining bias of vl is smaller than 1. This procedure

is repeated until Small or Large becomes empty. Note that

the resulted alias table is not unique. Large and Small can

307

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 03,2023 at 08:24:48 UTC from IEEE Xplore. Restrictions apply.

be implemented as either stacks or queues as they both lead

to valid results.

Algorithm 1 Serial algorithm to construct alias table.

Input: B = {b1, b2, ...bn}
Result: Prob,Alias

1 Large = Small = Alias = ∅;

2 Prob = {pi|pi = n∗bi∑n
1 bj

, 1 ≤ i ≤ n} ;

3 for i = 1 to n do
4 if pi > 1 then
5 Large = Large ∪ {vi};
6 else
7 Small = Small ∪ {vi};
8 end
9 while Large �= ∅ And Small �= ∅ do

10 vs = Small.pop();
11 vl = Large.pop();
12 Prob[vl] = Prob[vl] + Prob[vs]− 1;
13 Alias[vs] = vl;
14 if Prob[vl] > 1 then
15 Large = Large ∪ {vl};
16 else if Prob[vl] < 1 then
17 Small = Small ∪ {vl};
18 end

To utilize the parallelism of GPU, Skywalker utilizes mul-

tiple threads to compute the alias table of one vertex. Several

threads in one thread warp or thread block, termed as a

workgroup, work cooperatively. Threads in one workgroup

can insert vertices into Large and Small simultaneously

using atomic operations (line 3 to 8 of Algorithm 1). As for

combining the vertices in Large and Small (line 9 to 18 of

Algorithm 1), each thread in one workgroup dequeues and pro-

cesses one pair of large- and small-bias vertices independently

as long as there are enough vertices in Large and Small.

However, the construction would have limited parallelism

if the number of vertices in Large or Small is imbalanced.

Consider the example shown in Figure 5(a). This workgroup

has eight threads. The size of Small is equal to or larger

than 8 while there are only three vertices in Large. Thus, five

threads will be idle as they can not get one large-bias vertex

to process. This situation is common as we cannot assume

that Large and Small have similar sizes. Actually, different

bias distributions result in Large and Small with different

sizes. For example, using vertex degree as the bias on power-

law graphs would result in few large-bias vertices and many

small-bias vertices. In such cases, many vertices would be idle

as they cannot get large-bias to process.

b) Handling Irregular Bias Distribution: To solve the

above problem, we propose a technique named speculative
execution. As the bias of vertices in Large will eventually

be distributed into several buckets of vertices in Small,
we can let several small-bias vertices aggressively consume

the bias of large-bias vertices. This could result in negative

biases when the biases of those vertices are over-consumed,

which is impossible under normal execution. In this situation,

those threads that incur over-consumption should roll back

their execution. In this way, the workgroup would have full

T0 T1 … T7

Small

Large

(a) Direct mapping.

T0 T1 … T7

Small

Large

(b) Speculative execution.

Fig. 5: Workload mapping strategies have different parallelism

when Large and Small are imbalanced.

parallelism even if the size of Large is smaller than the size

of Small or the size of the workgroup.

Algorithm 2 Parallel alias table construction.

Input: Large, Small, Prob, Alias
Result: Prob,Alias

1 while Large �= ∅ do
2 if ThreadIdx < Large.size then
3 IsMain = true;
4 else
5 IsMain = false;
6 vs = Small.pop();
7 if ThreadIdx == 0 then
8 Large.size− = MIN(Large.size,GroupSize);
9 vl = Large[ThreadIdx mod Large.size];

10 oldP = atomicSub(Prob[vl], (1− Prob[vs]));
11 if oldP − (1− Prob[vs]) < 0 then // Roll back
12 AtomicAdd(Prob[vl], (1− Prob[vs]));
13 Small = Small ∪ vs;
14 else // Successful update
15 Alias[vs] = vl;
16 if IsMain then
17 if Prob[vl] > 1 then
18 Large = Large ∪ vl;
19 else if Prob[vl] < 1 then
20 Small = Small ∪ vl;
21 end

As Figure 5(b) shows, eight threads in a workgroup work

cooperatively. Each thread has a unique smaller-bias vertex

to process. As for large-bias vertices, there are only three of

them. Specifically, we term the threads with a local index less

than the size of Large as main threads. Main threads hold the

ownership of the respective vertices, and are responsible for

enqueuing that vertex to Large or Small at the end of the

steps. Those non-main threads can also consume the bias of

one large-bias vertex for its smaller-bias vertices even though

they do not hold the ownership. Thus, thread t0, t1, t2 are

the main threads, holding the ownership of vertex vl0 , vl1
and vl2 , respectively. All threads try to process their low-

bias vertices using atomic operations, speculatively. If the

resulted probabilities are valid, the speculative execution is

succeeded, and the corresponding threads continue to update

the alias table. Otherwise, the corresponding threads withdraw

their probability updates. Note that the atomic functions in

308

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 03,2023 at 08:24:48 UTC from IEEE Xplore. Restrictions apply.

Algorithms 2 return the original value before modification,

following CUDA’s semantic [34]. At the end of this step, main

threads enqueue the large-bias vertices to Large or Small
based on their current probability. In this way, the parallelism

is improved. Algorithms 2 shows the parallel algorithm.

If the workgroup is a block, block synchronization is nec-

essary. For GPUs whose architecture is newer than Volta [35],

warp-level synchronization is also needed as the independent
thread scheduling feature does not guarantee divergent threads

in one warp to converge. For most of the vertices, the atomic

operations are on shared memory with negligible overhead.

C. Exploiting Inter-instance Parallelism

This subsection presents how Skywalker exploits inter-

instance parallelism of graph sampling.

1) Versatile Sampler: Skywalker introduces an execution

model named versatile sampler for sampling tasks. More than

implementing the algorithm introduced in § III-B, versatile

sampler allows GPU threads to participate in different levels

of collaboration for alias table construction with low overhead.

a) Multi-level Load-balancing: Real-world graphs often

have skewed degree distributions, and therefore a onefold par-

allel execution strategy would cause severely load-imbalance.

It can result in stragglers that dominate the execution time. To

efficiently handle the skewness of graphs, Skywalker leverages

a hierarchical algorithm to assign GPU resources for vertices

with varying degrees. Specifically, Skywalker determines the

different sizes of workgroups to process one transit vertex

using two thresholds: warp-processing threshold and block-
processing threshold. For low-degree vertices whose degrees

are lower than the warp-processing threshold, 4 or 8 threads in

the same warp cooperate to construct the alias table. For mid-
degree vertices with degrees higher than the warp-processing

threshold but lower than the block-processing threshold, Sky-

walker provides a warp for them. For the remaining high-
degree vertices with degrees higher than the block-processing

threshold, threads in one block work cooperatively.

This strategy is inspired by the virtual warp-centric [36]

and the Thread-Warp-CTA (TWC) [12], [37] strategy used in

GPU-based graph processing frameworks. Virtual warp-centric

strategy leverages sub-warps to improve the utilization. TWC

utilizes thread, warp or CTA (cooperative thread array, the

same as thread block) to process vertices with varying degrees.

But they are different as the operations of traditional graph

computing algorithms are generally simpler and independent

while constructing the alias table is more complicated and

requires cooperation among threads.

b) Role Morphing: Skywalker allows the threads to

morph between different roles. Specifically, Skywalker imple-

ments subwarp-, warp- and block-collective alias table con-

structors as GPU device functions. During execution, threads

in one block morph between these modes on demand. Similar

to the persistent thread [38] execution model, the kernel

threads which are alive across the execution consume the tasks

in a queue until there are no other tasks to be processed. This

strategy reduces the kernel invoking overhead. Furthermore,

Skywalker leverages shared memory to store the context of

samplers. As shared memory has the lifetime of a block [34],

the shared memory consumption of the kernel would be the

sum of all device functions. To solve this issue, Skywalker

statically casts the sampler contexts between subwarp-, warp-

and block-collective ones. Note that the threads in one block

guarantee the same execution mode by the block barrier.

Unlike the persistent thread model where threads in one

block do the same work on different inputs independently, ver-

satile sampler allows threads in one block to morph between

three working modes where a different number of threads work

collectively to process one task. The load-balancing of the

original persistent thread model relies on the assumption that

each thread needs to do a similar amount of work for each

task. However, the workload of construction the alias table

for one vertex, as a basic work unit, is highly varied due to

the irregularity of graphs.

c) Memory Requirement Discussion: Alias table con-

struction demands a large size of memory to store the interme-

diate data. As described above, Skywalker assigns warps and

blocks for high- or low-degree vertices. Each SM of an Nvidia

GPU can run at most 32 warps concurrently. Thus, it requires

thousands of active warps to saturate the hardware resources

for a recent GPU with around 100 SMs [39]. Moreover, the

sizes of these intermediate data are dependent on the degree of

transit vertices, which is highly varied and unpredictable. It is

hard to accommodate the memory requirement as real-world

graphs may have extremely high degree vertices. Unlike CPU-

based frameworks that are free to leverage dynamic arrays,

GPU in-kernel memory allocation/deallocation is considered to

be slow and unreliable [40], [41]. Even though there are works

on dynamic GPU memory allocators [40]–[42], Skywalker

chooses to reuse the allocated buffer to fully eliminate the

overhead of dynamic memory allocation instead. If we pre-

allocate a large buffer capable of storing intermediate data for

all processed vertices having the highest degree, the memory

requirement would be

Mem1 = K ×#SM ×WorkgroupPerSm×MaxDegree

where K stands for the memory consumption of constructing

an alias table for one element (around 16 bytes). This could

consume gigabytes of GPU memory for a graph with 30000 as

the highest degree (Orkut, for instance). This would severely

limit the capability of processing large graphs.

Skywalker leverages different sizes of workgroups to con-

struct the alias tables. The subwarp- and warp-collective sam-

ples are assigned to process the vertices whose degrees have

an upper bound. Thus, the memory requirement is reduced to

Mem2 = K ×#SM × (SubwarpPerSm× TH1

+WarpPerSm× TH2

+BlockPerSm×MaxDegree)

where TH1 and TH2 stands for the warp- and block-

processing threshold.

309

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 03,2023 at 08:24:48 UTC from IEEE Xplore. Restrictions apply.

Sample task Sampler kernel

Job queue

High-degree
job queue

Sampled
edges

Thread block k

…

Block-collective sampler

Graph data
Weighted CSR

Alias table

Sampler state

Probability
array Alias array Valid array

Warp-collective
sampler

Warp-collective
sampler

Warp-collective
sampler

…

Subwarp-collective sampler

Fig. 6: Skywalker’s execution flow.

2) Semi-asynchronous Execution: Sampling systems [9],

[18] derived from graph processing systems often follow

the synchronous iterative-based execution pattern. However,

blocks often have a different amount of workload due to the

irregularity of graphs during execution. Those thread blocks

processing transit vertices with extremely high degrees could

become the stragglers for the current iteration. Moreover,

synchronous execution fails to utilize the potential locality

existing in sampling algorithms. Sampling one instance only

requires the data of k-hop neighbors of the root vertex.

Synchronous execution with large batch-size processes transit

vertices in the frontier successively, thus would eliminate the

locality. Synchronous execution would cause frequent data

eviction from the cache to global memory even though such

data would be used for the next depth of sampling. For

large graphs using streaming processing or Unified Memory

(UM), the overhead is even heavier as moving data from the

main memory through the PCI-e interface has much higher

latency. On the other hand, asynchronous execution is no

panacea. Recall that Skywalker leverages warp and block

to process collectively. Full-asynchronous execution requires

frequent synchronizations within the thread block to convene

all threads for collectively processing a high-degree vertex.

To tackle the above problems, Skywalker adopts a semi-
asynchronous [43] execution strategy for sampling and ran-

dom walk algorithms. Specifically, the samplers in Skywalker

continually request jobs from a per-depth global queue and

process its job independently. When one sampler is free and

there are no jobs for the current depth in the queue, this

sampler advance to process jobs for the next depth without

the need of waiting for other samplers.

Figure 6 shows the execution flow of Skywalker: 1© Each

thread warp runs a subwarp-collective sampler. The samplers

acquire jobs from the job queue. If the transit vertex to be

sampled has a degree no larger than the warp-processing

threshold, the subwarp-collective sampler constructs the alias

table, and draws samples for it. 2© When a sampler get a high-

degree transit vertex, it enqueues that vertex to a queue storing

the high-degree jobs. For mid-degree transit vertices versatile

sampler temporarily stores them in a per-SM queue. 3© When

the global job queue for current iteration is empty, subwarp-

collective samplers in one thread warp group together and

becomes one warp-collective sampler to process jobs in the

per-SM queue. 4© When the per-SM job queue is empty, warp-

collective samplers in one thread block group together and

becomes one block-collective sampler. 5© The block-collective

sampler processes the transit vertices in the high-degree queue

until empty. 6© The block-collective sampler converts back

into subwarp-collective samplers for the next iteration.

3) Selecting Vertices: After the construction of the alias ta-

ble, we want to select vertices based on the alias table. Most of

the sampling algorithms adopt sampling without replacement.
In other words, the selected vertices for one transit vertex

should have no redundancy. Skywalker leverages a bitmap for

each transit vertex to avoid redundant selection. Specifically,

each bit of the bitmap indicates whether one vertex has been

selected or not. As GPU cannot directly update the adjacent

bits in one byte without using atomic operation, Skywalker

uses one byte for each vertex instead. When selecting, threads

use the atomic compare-and-swap operation to ensure avoid

selecting one vertex repeatedly. As Skywalker adopts the alias

method, we can perform resampling with constant overhead.

As random walk algorithms select one vertex per depth, there

is no need for such a bitmap to avoid redundancy.

For realtime workload, Skywalker selects vertices right after

the alias table construction. Several threads in one workgroup

select vertices once the workgroup constructs this alias table.

For offline workload, Skywalker executes random walk and

sampling differently. Specifically, Skywalker follows the semi-

asynchronous execution in realtime mode for graph sampling.

As one walker selects exactly one vertex per depth, each

walker runs on one thread asynchronously till its end.

D. Memory Optimizations

This subsection presents how Skywalker optimizes the

memory access and reduces the memory requirement.

1) Accelerating Alias Table Construction with Shared Mem-
ory Buffer: To create the probability table and alias table

(Prob and Alias) for one vertex, we need to load all its

neighbors in queues and process them with frequent enqueu-

ing/dequeuing operations. The speed of these operations is

crucial for performance. Skywalker leverages shared memory

of GPUs to further optimize the buffer. Shared memory, as a

region of programmable scratchpad memory inside each SM,

provides much lower access latency and higher bandwidth than

global memory. Each SM generally has around 48 KB shared

memory, which is sufficient to act as a buffer for subwarp-

and warp-collective sampler. For example, each SM supports

1024 concurrent threads at most. Thus, each warp can be

provisioned with around 1.5 KB shared memory. This means a

warp-collective sampler can process nearly 100 elements using

buffer shared memory, which is larger than a reasonable warp-

processing threshold. For a block-collective sampler, shared

memory in each SM alone is not sufficient for processing ver-

tices with extremely high degrees. In this scenario, Skywalker

splices shared memory and global memory for the buffer. In

310

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 03,2023 at 08:24:48 UTC from IEEE Xplore. Restrictions apply.

Alias table

12

10

1413

11

K+4K… …

12 13 1411… …

10 11
CSR
Row
offset

Column
index

11 11 1311… …

Skywalker’s alias table

0 0 20… …

Alias
array

Alias
array

4-byte 1-byte

Alias
offset

0xk
+4

… …0xK

Fig. 7: Skywalker uses the compressed alias table. The prob-

ability array is not shown.

other words, the buffer falls back to global memory when the

required buffer size is larger than the size of shared memory.

Thus, the memory requirement is further reduced to

Mem3 = K ×#SM ×BlockPerSm×MaxDegree.

This strategy allows to enjoy the low latency of shared memory

for the most of time. At this point, Skywalker effectively

leverages shared memory on GPU and significantly reduces

the memory requirement for alias table construction.

2) Compressed Alias Table: Storing or caching the alias

table for future reuse requires large space. The length of the

alias array and the probability array of the alias table equals

to the out-degree of one vertex. Storing the alias table for the

whole graph needs twice space as the graph structure data.

Considering the limited memory capacity of GPU, this greatly

restricts the capability of sampling large graphs.

To address the above issue, Skywalker efficiently com-

presses the alias table. Specifically, the original alias method

stores the indices of neighbor vertices which range from 1 to

|V |. For graphs with millions of vertices, a 4-byte format is

necessary for identifying the vertex indices. Considering that

the degree of vertices in one graph is generally much smaller

than |V |, Skywalker stores the offset rather than the vertex

indices in the alias table. Depending on the maximum degree

in on graph, Skywalker can leverage 1-byte, 2-byte, or 4-byte

format for the alias array, alternatively.

Recall that the degree of vertices varies and most of the

vertices in real-world graphs have low degrees. Skywalker

further adopts different formats for different vertices on the

alias array. For example, suppose we want to sample a vertex

v10 with 4 neighbors shown in Figure 7. As the unsigned 1-

byte int format can represent numbers up to 255, its alias array

can leverage the unsigned 1-byte int format to represent its

neighbors with the offset. When drawing samples, the offsets

are randomly selected first and are used to find the actual

indices of neighbors based on the CSR. To construct such an

alias table in a compact format, a preprocessing procedure is

necessary. Specifically, Skywalker computes an offset for each

vertex to indicate the start position of its alias array. This

length of each alias table is computed based on the degree

and the format capable of storing the offset of neighbors. The

start positions also abide by the alignment requirement. When

selecting vertices, Skywalker finds the start position based on

the alias offset and then looks up the alias array to find the

offset of the selected neighbor in the format determined by its

degree. Using the offset, Skywalker gets the neighbor index

by looking up the column index array in the CSR.

IV. EVALUATION

In this section we evaluate Skywalker. Specifically, we want

to answer four questions:

• What kind of speedup can Skywalker bring to unbiased

workloads?

• How is the performance of Skywalker on workloads with

static or dynamic bias?

• How do the introduced optimizations contribute to the

performance?

A. Methodology

a) Platform: We conduct experiments on a Linux server

with two 2.40 GHz Intel 20-core, Xeon 6148 CPUs with

hyper-threading disabled (40 cores in total). Each CPU has

27.5 MB L3 Cache. The main memory is 256GB. Four

NVIDIA RTX 2080Ti GPU with 11GB GDDR6 memory is

connected to this system through PCI-e ×16 interface. One

NVIDIA RTX 2080Ti GPU has 68 multiprocessors (SMs),

each with 64 CUDA cores. The operating system is Ubuntu

16.04 with Linux kernel 4.15.0. We use the NVCC compiler

version 11.0.167 (g++ version 7.5.0) to compile.

b) Baseline Frameworks: We evaluate the performance

of Skywalker comparing with systems:

1) GraphWalker [15] is a single-machine graph random

walk engine. It preferentially processes the loaded sub-

graphs to optimize for IO efficiency.

2) KnightKing [16] is a distributed graph random walk

engine. KnightKing leverages the alias method for al-

gorithms with static bias and rejection sampling for dy-

namic bias. It proposes two optimizations named outliers

handling and pre-acceptance for rejection sampling.

3) C-SAW [18] is a GPU-based graph sampling and ran-

dom walk framework. It leverages the Inverse Transform

Sampling method. It computes the cumulative transition

probability array using prefix sum. C-SAW also includes

optimizations named bipartite region search for resam-

pling, and stridden bitmap for collision detection.

4) Nextdoor [8] is a GPU-based framework, utilizing the

same rejection sampling technique from KnightKing.

Table I summarizes the baselines and Skywalker. We obtain

their source code from Github. Note that GraphWalker only

supports unbiased walk and the public APIs of C-SAW do

not support PPR, node2vec and unbiased sampling. Besides

these, C-SAW skips all vertices with degrees higher than 8000

as it pre-allocates a fixed-sized buffer for each thread block.

c) Workload: To understand the performance of Sky-

walker, we carefully select several workloads to cover both

sampling and random walk algorithms in different applica-

tion scenarios. The evaluated algorithms include Deepwalk,

PPR, node2vec and NeighborSampling. Note that the

baseline systems have different processing capabilities and

may not support part of the evaluated algorithms. We eval-

uate both unbiased and biased versions of these algorithms.

311

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 03,2023 at 08:24:48 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Baseline comparison.

Name Sampling Method Supported workload
Graphwalker [15] Unbiased. Unbiased PPR.
KnightKing [16] Alias method (offline) for static bias, rejec-

tion sampling for dynamic bias.
Biased/unbiased random walks.

C-SAW [18] Inverse transform sampling. Biased DeepWalk and sampling.
NextDoor [8] Rejection-sampling Unbiased node2vec and Sampling. Bi-

ased DeepWalk and PPR.
Skywalker Alias method (offline and on-the-fly). Biased/unbiased walks and sampling.

TABLE II: Graph datasets in evaluation from [44], [45]. The

sizes are graphs in human-readable weighted edgelist format.

Dataset Abbr. |V | |E| Max Degree Size(GB)
web-Google GG 0.9 M 5.1 M 456 0.07
Livejournal LJ 5 M 69 M 20 K 1.4

Orkut OK 3 M 117 M 33 K 2.0
Arabic-2005 AB 22 M 640 M 10 K 12

UK-2005 UK 39 M 936 M 5 K 18
Friendster FS 65 M 1.8 B 3 K 35
SK-2005 SK 50 M 1.9 B 12 K 38

For NeighborSampling, we adopt the configuration from

GraphSAGE [5] with the sampling depth as 2 and expansion

factor (the number of neighbors to be sampled for one vertex)

as S1 = 25 and S2 = 10. For PPR, we use 15% as determi-

nation probability. For node2vec, we use hyper-parameter

p = 2.0 and q = 0.5. For all random walk algorithms, we use

100 as the maximum length. For all algorithms, we perform

sampling with batch size 40000.

d) Metrics: For most of the experiments, we report

the runtime excluding the time of loading data from disk

and initialization. For Graphwalker, we exclude the time of

repeatedly loading graph chunks during processing. For GPU-

based systems, we report the kernel execution time on GPU.

We consider the time of alias table construction for the

full graph as preprocessing for KnightKing and Skywalker

unless specified otherwise. We evaluate the cost of alias table

construction for the full graph in § IV-B3. Note that C-SAW

skips all vertices with a degree higher than 8000, resulting in

much less sampled edges than they should be. We scale the

runtime with a factor of the sampled edges.

e) Graph Dataset: We conduct experiments on a vari-

ety of widely used datasets listed in Table II. LiveJournal

(LJ) [44], Orkut (OK) [44] and Friendster (FS) [44] are social

networks. Web-Google (GG) [44], Arabic-2005 (AB) [45],

UK-2005 (UK) [45] and SK-2005 (SK) [45] are web graph

snapshots. We generate edge weight ranging from 1 to 64

uniformly. The size of the datasets varies from 1.4GB to 38GB.

B. Experiment Result

1) Performance of Unbiased Workload.: Table III shows

the results of KnightKing, Graphwalker, NextDoor, and Sky-

walker. Skywalker outperforms the baselines across all test

cases. Specifically, Skywalker achieves up to 5894× and 641×
average speedup over Graphwalker on Deepwalk and PPR,

respectively. The surprising performance over Graphwalker is

because Graphwalker performs random walks on static graph

partitions which introduces scheduling overhead.

As for knightking, Skywalker achieves up to 641×, 142×
and 4157× average speedup over it on Deepwalk, PPR and

node2vec, respectively. Note that the speedup of Skywalker

on node2vec over knightking is larger than other algorithms.

This is because node2vec algorithm need to check the

connectivity of sampled vertices with previously sampled

vertex which is time-consuming and the straggler thread would

block the execution of all threads. Skywalker does not have

this issue as it schedules SMs to work independently.

NextDoor cannot process graphs larger than UK due to

its high memory requirement. Compared with NextDoor,

Skywalker achieves 49.8× and 5.2× average speedup on

node2vec and NeighborSampling.

2) Performance for Biased Workloads.: Figure 8 shows

the result of biased workloads. We normalize the result by

Skywalker’s runtime. Skywalker achieves 3.6∼21× speedup

on DeepWalk, 1.7∼38× speedup on PPR, and 2∼190×
speedup on node2vec over KnightKing.

As for C-SAW, Skywalker achieves 10∼93× speedup on

DeepWalk, 483∼5878× speedup on NeighborSampling.

The missing data of C-SAW on graphs larger than AB is

because the in-memory version needs to store the full graph

in GPU memory. Skywalker does not have this issue as it

can utilize the CPU main memory through the Unified Mem-

ory mechanism along with space-efficient designs. Besides,

the optimized memory management alleviates the overhead

caused by oversubscription of Unified Memory. Skywalker

outperforms C-SAW so much as Skywalker can utilize the

pre-computed alias table while C-SAW always needs to com-

pute the cumulative transition probability. Skywalker shows

higher speedup on NeighborSampling than DeepWalk
as Skywalker has lower overhead for sampling multiple items

without replacement for two reasons: firstly, sampling with
alias method is more efficient as it costs constant time while

the binary-search approach of C-SAW needs O(log n) time.

Secondly, the cost of handling selection collision is lower. The

cost of both collision detection and re-sampling on Skywalker

is much lower than on C-SAW.

Comparing with the most recent sampling frame-

work NextDoor, Skywalker achieves 2.6∼35× speedup on

DeepWalk and 2.5∼40× speedup on PPR.

3) Construction Alias Table for the Full-graph: Figure 9

compares the runtime of realtime and offline Deepwalk on

graph GG and OK with length 100. The runtimes of realtime

312

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 03,2023 at 08:24:48 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Result of unbiased workloads. ” ” indicates failures due to internal error. ”O.O.M” indicates out-of-memory error.

Workload Framework Runtime (ms) Average Speedup
of SkywalkerGG LJ OK AB UK SK FS

Deepwalk
Graphwalker 172 338 721 1719 1739 5894

Knightking 17 12 13 14 16 3 17 60

Skywalker 0.44 1.25 0.22 0.15 0.48 0.21 0.1 1

PPR
Graphwalker 29 40 30 73 109 641

Knightking 3 16 20 16 23 1 16 142

Skywalker 0.11 0.18 0.13 0.06 0.08 0.08 0.1 1

node2vec
Knightking 1189 1382 202 1033 2323 946 122 4157

Nextdoor 26 38 6.8 17.8 30.4 O.O.M O.O.M 49.8

Skywalker 1.11 1.98 0.45 0.11 1.04 0.07 0.07 1

Sampling
Nextdoor 1.7 1.97 2 1.7 1.7 O.O.M O.O.M 5.2

Skywalker 0.3 0.73 1.24 0.22 0.21 0.3 0.3 1

GG LJ OK AB UK SK FS
Deepwalk

100

101

102

N
or

m
al

iz
ed

 R
un

tim
e

GG LJ OK AB UK SK FS
PPR

100

101

GG LJ OK AB UK SK FS
node2vec

100

101

102

GG LJ OK AB UK SK FS
Neighbor Sampling

100

101

102

103

Knightking
C-SAW
NextDoor
Skywalker

Fig. 8: Results of biased workloads. The runtimes normalized by Skywalker’s runtime.

(a) Result on GG.

0

20

40

60

80

100

0 5 10 15 20

Ru
nt

im
e

(m
s)

% of vertices as number of walker

Realtime Offline

(b) Result on OK.

Fig. 9: The runtime of realtime and online Deepwalk. The

x-axis means the number of walkers equal to |V | × n%.

workload grow proportionally to the number of walkers. For

offline workloads, Skywalker constructs the alias table for

all the vertices of such graph, and then performs sampling.

Invoking walkers with a number of about 2%|V | or 8%|V |
have similar runtimes on realtime or offline scenarios for

GG and OK, respectively. After such points, the runtimes of

offline scenarios grow very gently as Skywalker has signifi-

cantly higher throughput for offline workloads than realtime

workloads. Thus, Skywalker has the flexibility to allow users

to choose from realtime mode for the capability of handling

dynamic bias or offline mode for higher execution throughput.

4) Speedup Breakdown:

0
1
2
3
4
5
6

GG LJ OK AB UK SK FS GG LJ OK AB UK SK FS

Deepwalk node2vecN
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Sync Semi-async

Fig. 10: The normalized performance with synchronous and

semi-asynchronous execution strategy.

a) Semi-asynchronous Execution: Figure 10 shows the

results of Skywalker using its semi-asynchronous or normal

synchronous execution strategy. With semi-asynchronous exe-

cution, Skywalker achieves 1.1∼5.2× and 1.2∼3.6× speedup

on Deepwalk and node2vec, respectively.

b) Speculative Execution: Figure 11 shows the results of

SKywalker with or without speculative execution. With specu-

lative execution, Skywalker achieves 1.2∼3.1× and 1.1∼1.6×
speedup on Deepwalk and Neighbor sampling, respectively.

c) Compressed Alias Table: Figure 12 shows the space

requirement for uncompressed and compressed alias array.

The compressed alias array saves over 66% spaces compared

with the original version on the evaluated graphs. This allows

313

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 03,2023 at 08:24:48 UTC from IEEE Xplore. Restrictions apply.

0

1

2

3

4

GG LJ OK AB UK SK FS GG LJ OK AB UK SK FS

Deepwalk Neighbor SamplingN
or

m
al

iz
ed

 P
er

fo
rm

an
ce

w/o Spec. Exe. w/ Spec. Exe.

Fig. 11: The normalized performance of Skywalker with and

without speculative execution.

0.25 0.27 0.31 0.30 0.27 0.28 0.34

0

0.2

0.4

0.6

0.8

1

GG LJ OK AB UK SK FS

N
or

m
al

iz
ed

 S
pa

ce

Uncompressed Compressed

Fig. 12: The normalized space requirement for uncompressed

and compressed alias array.

Skywalker to process large graphs, sacrificing no or less

overhead of using unified memory or remote GPU memory.

V. RELATED WORKS

a) CPU-based Random Walk Systems: DrunkardMob [9]

is an out-of-core random walk framework based on

GraphChi [10]. It leverages the vertex-centric computational

model from graph computing frameworks. KnightKing [16] is

a distributed system dedicated to random walk algorithms. It

introduces techniques for rejection sampling to assist the alias

method. However, these techniques are highly dependent on

the distribution of bias. GraphWalker [15] is a recent recently

proposed framework while only supports unbiased random

walk. Similar to DrunkardMob, it leverages the out-of-core

processing capability of GraphChi, and is optimized for IO.

b) GPU-based Sampling Systems: C-SAW [18], a GPU-

based framework, supports both graph sampling and random

walk algorithms. It leverages a parallel scan algorithm [46]

to perform inverse transform sampling. It also optimizes for

out-of-memory and multi-GPU sampling, which are unfor-

tunately not shown in its open-source implementation [29].

NextDoor [8] is a GPU-based framework, utilizing the same

rejection sampling technique from KnightKing.

c) Algorithm-specific Optimizations: Lin [47] proposed

a distributed algorithm for PPR. Bender et al. [48] presented

alias algorithms on shared-memory and distributed-memory

machines in theory. It includes a straightforward parallel alias

algorithm for the shared-memory machines by splitting Large
and Small in advance. This cannot be directly adopted on

GPU as GPU has different architecture and much higher

parallelism that must be explicitly addressed.

d) Handling Large Graphs on GPUs: GTS [49] and

Graphie [50] process the graph in the streaming manner.

Garaph [51] leverages both the CPU and GPU to collab-

oratively process the graphs. EtaGraph [52] and Grus [53]

adopt Unified Memory to extend GPU memory capacity with

the main memory. Subway [54] asynchronously generates

the activate subgraphs on the CPU and then accelerates the

processing with the GPU.

e) Graph Compression: Besides the general lossless and

lossy data compression techniques [55], [56], graph compres-

sion techniques [45], [57], [58] compress the graph structure

data. However, these techniques need a time-consuming de-

compression procedure, which is not suitable for the frequently

looked-up alias table. Skywalker does not introduce new

general or graph-specific compression or coding techniques.

Instead, the alias table can be considered as edge values while

values of the alias array are the neighbors. Skywalker exploits

the fact that the neighbor indices are also stored in the CSR.

By this method, Skywalker can compress the alias array, which

allows being looked up with negligible overhead.

f) Summary: This paper attacks the problem of effec-

tively adopting the alias method on GPUs. The proposed

parallel algorithm allows to execute the alias method on GPUs

effectively. The speculative execution technique explicitly han-

dles the potential irregularity of bias distribution to improve

the SIMD efficiency. The execution engine addresses the

irregularity of graphs to fully utilize the massive parallelism

of GPUs. Besides these, we carefully design the buffer reuse

mechanism and compressed alias table to reduce the mem-

ory consumption and to improve the large graph processing

capability on resource-limited GPUs.

VI. CONCLUSION

This paper presents Skywalker, a novel graph sampling

system that supports a wide variety of unbiased/biased graph

sampling and random walk algorithms on GPUs. Specifically,

we introduce a parallel algorithm for alias table construction,

an efficient parallel execution engine, and a compressed alias

table strategy. Skywalker shows significant performance ad-

vantage compared to the state-of-the-art baseline systems for

a wide spectrum of scenarios including unbiased sampling,

unbiased sampling with static and dynamic bias.

ACKNOWLEDGMENT

We thank all the reviewers for their valuable comments

and suggestions. This work is supported by the National

Natural Science Foundation of China (No.61972247 and

No.62072297). Corresponding author is Chao Li from Shang-

hai Jiao Tong University.

REFERENCES

[1] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale recom-
mender systems,” Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2018.

314

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 03,2023 at 08:24:48 UTC from IEEE Xplore. Restrictions apply.

[2] J. Wang, P. Huang, H. Zhao, Z. Zhang, B. Zhao, and D. Lee, “Billion-
scale commodity embedding for e-commerce recommendation in al-
ibaba,” Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2018.

[3] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 2016, pp. 855–
864.

[4] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2014, pp. 701–710.

[5] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in neural information processing
systems, 2017, pp. 1024–1034.

[6] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Accurate,
efficient and scalable graph embedding,” in 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2019,
pp. 462–471.

[7] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. K. Prasanna,
“Graphsaint: Graph sampling based inductive learning method,” in 8th
International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
[Online]. Available: https://openreview.net/forum?id=BJe8pkHFwS

[8] A. Jangda, S. Polisetty, A. Guha, and M. Serafini, “Nextdoor:
Gpu-based graph sampling for graph machine learning,” ArXiv, vol.
abs/2009.06693, 2020.

[9] A. Kyrola, “Drunkardmob: billions of random walks on just a pc,”
Proceedings of the 7th ACM conference on Recommender systems, 2013.

[10] A. Kyrola, G. E. Blelloch, and C. Guestrin, “Graphchi: Large-scale
graph computation on just a PC,” in 10th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2012,
Hollywood, CA, USA, October 8-10, 2012, 2012, pp. 31–46. [Online].
Available: https://www.usenix.org/conference/osdi12/technical-sessions/
presentation/kyrola

[11] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou,
Q. Huang, C. Ma et al., “Deep graph library: Towards efficient and
scalable deep learning on graphs,” arXiv preprint arXiv:1909.01315,
2019.

[12] Y. Wang, A. A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: a high-performance graph processing library on the GPU,”
in Proceedings of the 20th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2015, San Francisco,
CA, USA, February 7-11, 2015, 2015, pp. 265–266. [Online]. Available:
http://doi.acm.org/10.1145/2688500.2688538

[13] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale
graph processing,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2010, Indianapolis,
Indiana, USA, June 6-10, 2010, 2010, pp. 135–146. [Online]. Available:
http://doi.acm.org/10.1145/1807167.1807184

[14] A. H. N. Sabet, J. Qiu, and Z. Zhao, “Tigr: Transforming irregular
graphs for gpu-friendly graph processing,” in Proceedings of the
Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2018,
Williamsburg, VA, USA, March 24-28, 2018, 2018, pp. 622–636.
[Online]. Available: http://doi.acm.org/10.1145/3173162.3173180

[15] R. Wang, Y. Li, H. Xie, Y. Xu, and J. Lui, “Graphwalker: An i/o-efficient
and resource-friendly graph analytic system for fast and scalable random
walks,” in USENIX Annual Technical Conference, 2020.

[16] K. Yang, M. Zhang, K. Chen, X. Ma, Y. Bai, and Y. Jiang, “Knightking:
a fast distributed graph random walk engine,” in Proceedings of the
27th ACM Symposium on Operating Systems Principles, SOSP
2019, Huntsville, ON, Canada, October 27-30, 2019, T. Brecht and
C. Williamson, Eds. ACM, 2019, pp. 524–537. [Online]. Available:
https://doi.org/10.1145/3341301.3359634

[17] A. J. Walker, “An efficient method for generating discrete random vari-
ables with general distributions,” ACM Transactions on Mathematical
Software (TOMS), vol. 3, no. 3, pp. 253–256, 1977.

[18] S. Pandey, L. Li, A. Hoisie, X. S. Li, and H. Liu, “C-saw: A framework
for graph sampling and random walk on gpus,” 2020.

[19] S. Olver and A. Townsend, “Fast inverse transform sampling in one and
two dimensions,” arXiv: Numerical Analysis, 2013.

[20] J. Shi, R. Yang, T. Jin, X. Xiao, and Y. Yang, “Realtime top-k
personalized pagerank over large graphs on gpus,” Proc. VLDB Endow.,
vol. 13, pp. 15–28, 2019.

[21] A. Stivala, J. Koskinen, D. Rolls, P. Wang, and G. Robins, “Snowball
sampling for estimating exponential random graph models for large
networks,” Soc. Networks, vol. 47, pp. 167–188, 2016.

[22] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time:
Densification laws, shrinking diameters and possible explanations,” in
Proceedings of the Eleventh ACM SIGKDD International Conference
on Knowledge Discovery in Data Mining, ser. KDD ’05. New York,
NY, USA: Association for Computing Machinery, 2005, p. 177–187.
[Online]. Available: https://doi.org/10.1145/1081870.1081893

[23] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in Proceed-
ings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2006, pp. 631–636.

[24] D. Fogaras and B. Rácz, “Towards scaling fully personalized pagerank,”
in WAW, 2004.

[25] Q. Liu, Z. Li, J. Lui, and J. Cheng, “Powerwalk: Scalable personalized
pagerank via random walks with vertex-centric decomposition,” Pro-
ceedings of the 25th ACM International on Conference on Information
and Knowledge Management, 2016.

[26] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking : Bringing order to the web,” in WWW 1999, 1999.

[27] M. Cochez, P. Ristoski, S. P. Ponzetto, and H. Paulheim, “Biased graph
walks for rdf graph embeddings,” Proceedings of the 7th International
Conference on Web Intelligence, Mining and Semantics, 2017.

[28] D. J. MacKay and D. J. Mac Kay, Information theory, inference and
learning algorithms. Cambridge university press, 2003.

[29] “concept-inversion/c-saw: A framework for graph sampling and random
walk on gpus.” https://github.com/concept-inversion/C-SAW.

[30] H. Gao, Z. Wang, and S. Ji, “Large-scale learnable graph convolutional
networks,” Proceedings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, 2018.

[31] Y. Gao, H. Yang, P. Zhang, C. Zhou, and Y. Hu, “Graphnas: Graph
neural architecture search with reinforcement learning,” 2019.

[32] Z. Wei, X. He, X. Xiao, S. Wang, S. Shang, and J.-R. Wen, “Topppr:
Top-k personalized pagerank queries with precision guarantees on large
graphs,” Proceedings of the 2018 International Conference on Manage-
ment of Data, 2018.

[33] M. D. Vose, “A linear algorithm for generating random numbers with
a given distribution,” IEEE Trans. Software Eng., vol. 17, no. 9, pp.
972–975, 1991. [Online]. Available: https://doi.org/10.1109/32.92917

[34] Nvidia, “Programming Guide :: CUDA Toolkit Documentation,” https:
//docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

[35] “Volta Tuning Guide :: CUDA Toolkit Documentation.” [Online].
Available: https://docs.nvidia.com/cuda/volta-tuning-guide/index.html

[36] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating
CUDA graph algorithms at maximum warp,” in Proceedings of
the 16th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPOPP 2011, San Antonio, TX, USA,
February 12-16, 2011, 2011, pp. 267–276. [Online]. Available:
https://doi.org/10.1145/1941553.1941590

[37] D. Merrill, M. Garland, and A. Grimshaw, “Scalable gpu graph
traversal,” SIGPLAN Not., vol. 47, no. 8, pp. 117–128, Feb. 2012.
[Online]. Available: http://doi.acm.org/10.1145/2370036.2145832

[38] K. Gupta, J. A. Stuart, and J. Owens, “A study of persistent threads
style gpu programming for gpgpu workloads,” 2012 Innovative Parallel
Computing (InPar), pp. 1–14, 2012.

[39] “NVIDIA A100 — NVIDIA,” https://www.nvidia.com/en-us/
data-center/a100/.

[40] X. Huang, C. I. Rodrigues, S. Jones, I. Buck, and W. Hwu, “Xmalloc: A
scalable lock-free dynamic memory allocator for many-core machines,”
2010 10th IEEE International Conference on Computer and Information
Technology, pp. 1134–1139, 2010.

[41] M. Steinberger, M. Kenzel, B. Kainz, and D. Schmalstieg, “Scatteralloc:
Massively parallel dynamic memory allocation for the gpu,” 2012
Innovative Parallel Computing (InPar), pp. 1–10, 2012.

[42] M. Winter, D. Mlakar, M. Parger, and M. Steinberger, “Ouroboros: virtu-
alized queues for dynamic memory management on gpus,” Proceedings
of the 34th ACM International Conference on Supercomputing, 2020.

[43] H. T. Kung, “Synchronized and asynchronous parallel algorithms for
multiprocessors,” New Directions and Recent Results in. Algorithms and
Complexity, 6 2011.

315

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 03,2023 at 08:24:48 UTC from IEEE Xplore. Restrictions apply.

[44] J. Yang and J. Leskovec, “Defining and evaluating network
communities based on ground-truth,” in 12th IEEE International
Conference on Data Mining, ICDM 2012, Brussels, Belgium,
December 10-13, 2012, 2012, pp. 745–754. [Online]. Available:
https://doi.org/10.1109/ICDM.2012.138

[45] P. Boldi and S. Vigna, “The WebGraph framework I: Compression
techniques,” in Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). Manhattan, USA: ACM Press, 2004, pp.
595–601.

[46] A. Grimshaw and D. Merrill, “Parallel scan for stream architectures,”
University of Virginia, Department of Computer Science, Tech. Rep.,
2012.

[47] W. Lin, “Distributed algorithms for fully personalized pagerank on large
graphs,” in The World Wide Web Conference, 2019, pp. 1084–1094.

[48] L. Hübschle-Schneider and P. Sanders, “Parallel weighted random
sampling,” in 27th Annual European Symposium on Algorithms, ESA
2019, September 9-11, 2019, Munich/Garching, Germany, ser. LIPIcs,
M. A. Bender, O. Svensson, and G. Herman, Eds., vol. 144. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019, pp. 59:1–59:24.
[Online]. Available: https://doi.org/10.4230/LIPIcs.ESA.2019.59

[49] M. Kim, K. An, H. Park, H. Seo, and J. Kim, “GTS: A fast
and scalable graph processing method based on streaming topology
to gpus,” in Proceedings of the 2016 International Conference on
Management of Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, 2016, pp. 447–461. [Online]. Available:
http://doi.acm.org/10.1145/2882903.2915204

[50] W. Han, D. Mawhirter, B. Wu, and M. Buland, “Graphie: Large-scale
asynchronous graph traversals on just a GPU,” in 26th International
Conference on Parallel Architectures and Compilation Techniques,
PACT 2017, Portland, OR, USA, September 9-13, 2017, 2017, pp.
233–245. [Online]. Available: https://doi.org/10.1109/PACT.2017.41

[51] L. Ma, Z. Yang, H. Chen, J. Xue, and Y. Dai, “Garaph: Efficient
gpu-accelerated graph processing on a single machine with balanced
replication,” in 2017 USENIX Annual Technical Conference, USENIX
ATC 2017, Santa Clara, CA, USA, July 12-14, 2017., 2017, pp.
195–207. [Online]. Available: https://www.usenix.org/conference/atc17/
technical-sessions/presentation/ma

[52] P. Wang, L. Zhang, C. Li, and M. Guo, “Excavating the potential
of GPU for accelerating graph traversal,” in 2019 IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2019, Rio
de Janeiro, Brazil, May 20-24, 2019, 2019, pp. 221–230. [Online].
Available: https://doi.org/10.1109/IPDPS.2019.00032

[53] P. Wang, J. Wang, C. Li, J. Wang, H. Zhu, and M. Guo, “Grus: Toward
unified-memory-efficient high-performance graph processing on gpu,”
ACM Trans. Archit. Code Optim., vol. 18, no. 2, Feb. 2021. [Online].
Available: https://doi.org/10.1145/3444844

[54] A. H. N. Sabet, Z. Zhao, and R. Gupta, “Subway: minimizing
data transfer during out-of-gpu-memory graph processing,” in EuroSys
’20: Fifteenth EuroSys Conference 2020, Heraklion, Greece, April
27-30, 2020, 2020, pp. 12:1–12:16. [Online]. Available: https:
//doi.org/10.1145/3342195.3387537

[55] J. Gilchrist, “Parallel data compression with bzip2,” in Proceedings of
the 16th IASTED international conference on parallel and distributed
computing and systems, vol. 16, no. 2004. Citeseer, 2004, pp. 559–564.

[56] S. T. Klein and Y. Wiseman, “Parallel lempel ziv coding,” Discrete
Applied Mathematics, vol. 146, no. 2, pp. 180–191, 2005.

[57] G. Buehrer and K. Chellapilla, “A scalable pattern mining approach to
web graph compression with communities,” in Proceedings of the 2008
International Conference on Web Search and Data Mining, 2008, pp.
95–106.

[58] F. Claude and G. Navarro, “Fast and compact web graph representa-
tions,” ACM Transactions on the Web (TWEB), vol. 4, no. 4, pp. 1–31,
2010.

316

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 03,2023 at 08:24:48 UTC from IEEE Xplore. Restrictions apply.

APPENDIX

A. Abstract

This artifact contains the source code for Skywalker and

shell scripts to set up the environment and perform the

evaluation. We describe how to obtain the source code and

build the Skywalker project. We illustrate how to download

and preprocess the datasets for Skywalker. This artifact also

includes the example dataset for baseline systems and Sky-

walker.

B. Artifact check-list (meta-information)
• Program: Biased and unbiased version of Deepwalk, PPR,
node2vec and NeighborSampling

• Compilation: NVCC 11.0 (g++ version 7.5.0), CMake 3.15,
• Data set: web-Google , LiveJournal, Orkut, Arabic-

2005, UK-2005, Friendster and SK-2005 from SNAP
(http://snap.stanford.edu/data/index.html) and Webgraph
(http://law.di.unimi.it/datasets.php).

• Run-time environment: Ubuntu 16.04 with Linux kernel
4.15.0

• Hardware: Turing or newer GPU.
• Metrics: Runtime (and sampled edges).
• Output: Console and log file.
• Experiments: Biased and unbiased version of Deepwalk,
PPR, node2vec and NeighborSampling. We use batch
size as 40000 for most of experiments. The shell scripts to
perform evaluation Table 3 and Figure 8 are in ./scripts.

• How much disk space required (approximately)?: 51 GB
for Skywalker’s dataset. 500 GB for the full evaluation.

• How much time is needed to prepare workflow (approx-
imately)?: One hour for compilation. One day for datasets
downloading and transformation.

• How much time is needed to complete experiments (approx-
imately)?: One day.

• Publicly available?: Yes
• Code licenses (if publicly available)?: Apache Licenses
• Data licenses (if publicly available)?: No
• Workflow framework used?: No
• Archived (provide DOI)?: Yes. Available at

https://doi.org/10.5281/zenodo.5118306

C. Description
1) How to access: A repository that contains the

Skywalker code and evaluation scripts can be found in:
https://doi.org/10.5281/zenodo.5118306

2) Hardware dependencies: Skywalker requires an NVIDIA
GPU with compute capability at least 7.0. An NVIDIA RTX 2080Ti
GPU is used to generated sample output.

3) Software dependencies: To compile Skywalker, G++ 7.5,
CMake 3.15, and CUDA 10.0 are needed. Later versions might be
used not tested by authors.

Skywalker depends on gflags. The baseline systems for comparison
include GraphWalker, Knightking, Nextdoor and C-SAW. Please
install them following their detailed instructions for a full evaluation.
Their repositories are as following:

• https://github.com/rwang067/GraphWalker
• https://github.com/KnightKingWalk/KnightKing
• https://github.com/plasma-umass/NextDoor
• https://github.com/concept-inversion/C-SAW

4) Data sets: Web-Google, LiveJournal, Orkut, Arabic-2005,
UK-2005, Friendster and SK-2005 from SNAP, and Webgraph are
used in the evaluation. Those datasets need to be transformed into
.gr format of Galois. Do the following for datasets from SNAP:

1 wget http://snap.stanford.edu/data/wiki-Vote.txt.gz
2 gzip -d wiki-Vote.txt.gz
3 $GALOIS_PATH/build/tools/graph-convert/graph-convert

-edgelist2gr ˜/data/wiki-Vote.txt ˜/data/wiki
-Vote.gr

For datasets from Webgraph, do:

1 wget http://data.law.di.unimi.it/webdata/uk-2005/uk
-2005.graph

2 wget http://data.law.di.unimi.it/webdata/uk-2005/uk
-2005.properties

3 java -cp "*" it.unimi.dsi.webgraph.ArcListASCIIGraph
./uk-2005 ./uk-2005

4 $GALOIS_PATH/build/tools/graph-convert/graph-convert
-edgelist2gr ./uk-2005 ./uk-2005.gr

GraphWalker, KnightKing, Nextdoor and C-SAW also require their
dedicated data formats. Please follow their instructions to prepare
the datasets. Various preprocessed formats of an example dataset
(LiveJournal) are included in dataset.

D. Installation
• Download artifact from https://doi.org/10.5281/zenodo.5118306

.
• Run setup.sh.

E. Experiment workflow
Two shell scripts, table3_unbiased.sh and

fig8_biased.sh, contains the steps to get results for
Table 3 and Figure 8 in paper. Edit the install locations of
baslines (GraphWalker DIR, KnightKing DIR and CSAW DIR)
in table3_unbiased.sh and fig8_biased.sh. Then, run
those scripts to get the results.

F. Evaluation and expected results
Example output files for the experiments are in ./result.

317

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 03,2023 at 08:24:48 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T13:26:17-0400
	Preflight Ticket Signature

